Best Strategies to Avoid Leaks after Colon Surgery: Assessing and Addressing Malnutrition
Why is it important for SCOAP hospitals to measure albumin and manage hypoalbuminemia?

- Albumin reflects the patient’s nutritional status.
- Serum albumin concentration is a better predictor of surgical outcomes than most other preoperative patient characteristics.
- It is a relatively low-cost prognostic tool to detect malnutrition and risk of adverse surgical outcomes, particularly in populations in whom co-morbid conditions are relatively frequent.
- Albumin levels are used for risk adjustment of SCOAP data.
Reference serum values range from 3.5-4.5 g/dL, with a total body content of 300-500 g.

- Synthesis occurs only in hepatic cells at a rate of approximately 15 g/d in a healthy person, but the rate can vary significantly with various types of physiologic stress.
- The half-life of albumin is approximately 21 days, with a degradation rate of approximately 4% per day.
- Following surgery and under stress, such as sepsis, the value can drop rapidly.
54,215 cases from the National VA Surgical Risk Study database with recorded preoperative serum albumin values were analyzed.

This was a multi-center, prospective observational study. Patients at 44 tertiary-care VA Medical Centers who underwent non-cardiac surgery under general, spinal, or epidural anesthesia were entered in the study.

The major outcome measures were 30-day postoperative mortality and 30-day postoperative morbidity.
Mortality vs. Serum Albumin

Mortality increases as albumin declines

61 other preoperative variables were examined and none correlated as closely with mortality (through multiple regression analyses)
• Serum albumin level is an excellent predictor of surgical outcome. It is a relatively low-cost test in relation to its prognostic value and appears to be underutilized by some surgeons. In addition, it is a cost-effective component of nutritional screening.

• Despite the high value of knowing a patient’s albumin level, there was wide variation among the 44 VA surgical services in the rate of preoperative serum albumin testing.
UWMC Albumin Data

Albumin Testing Rates

• Data Collected from NSQIP from September 18, 2006 to July 1, 2009

• 3867 total cases
 • 50% had albumin tested

• 3510 non-emergent cases
 • 46% had albumin tested
Of the 1628 Non-Emergent Cases with Albumin Testing:

- Albumin <2 in 3.3% of cases
- Albumin <2.5 in 7.2% of cases
- Albumin <3 in 14% of cases
- Albumin <3.5 in 31.1% of cases
- Albumin <4 in 72.3% of cases
Complication Rates by Albumin

- <2
- 2.0-2.4
- 2.5-2.9
- 3.0-3.4
- 3.5-3.9
- 4.0 and above
- Not tested
• 4 meta-analyses examining prospective randomized controlled trials (PRCTs) of parenteral nutrition in preoperative patients.
 – 59 Prospective randomized controlled trials
 – TPN improves surgical outcomes but increases infectious complications

• 6 PRCTs of enteral nutrition in preoperative patients.
Evidence on preoperative enteral nutrition

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients/Dx</th>
<th>Randomization</th>
<th>Type of intervention</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shukla et al. 1984</td>
<td>110 pts with benign or malignant GI, breast, or oropharyngeal dx</td>
<td>1). 55 pts standard oral diet 2). 55 pts NG enteral nutrition</td>
<td>10 days of NG enteral nutrition vs 10 days of routine diet</td>
<td>Postop mortality: 50% reduction in the treated group (6% vs. 11.7% controls)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wound infx: 10.4% vs 37.2% controls</td>
</tr>
<tr>
<td>Foschi et al. 1986</td>
<td>68 pts with obstructive jaundice (Pancreatic CA, CBD CA, CBD gallstones, CBD benign stricture)</td>
<td>1). Percutaneous transhepatic biliary drainage alone (n=32) 2). Percutaneous transhepatic biliary drainage and alimentation (n=28)</td>
<td>Of 28 pts w/ nutrition support: 19 pts enteral nutrition 4 pts TPN 5 pts both</td>
<td>Postop complication: 46.8 vs. 17.8%. Infectious complication: 28.1 vs. 14.2%. Non-infectious complication: 18.8% vs. 3.6%</td>
</tr>
<tr>
<td>Flynn et al. 1987</td>
<td>61 pts with head and neck SCC</td>
<td>1). 25 patients nutritionally healthy 2). 36 pts malnourished: (a) 19 patients placed in supplemented group (b)17 given only nutritional counseling.</td>
<td>Supplemented group- Given specific regimen or nutritional supplements to meet needs. Interval varied 10 to 21 days. vs Control group- Nutritional counseling only.</td>
<td>Postop complications: 50% reduction in the supplemented group (32% vs. 59% controls) LOS: 18 days vs 21 days</td>
</tr>
</tbody>
</table>
Evidence on preoperative enteral nutrition

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients/Dx</th>
<th>Randomization</th>
<th>Type of intervention</th>
<th>Findings</th>
</tr>
</thead>
</table>
| von Meyenfeldt et al. 1992 | 200 pts with gastric or colorectal CA | 1). Preop TPN
2). Preop enteral nutrition
3). Depleted group, surgery without delay
4). Non-depleted group, surgery without delay | Preop TPN-150% of BEE for at least 10 days
Preop enteral nutrition-150% of BEE for at least 10 days either by NG tube or by mouth | Reductions in intra-abd abscess: 16%(depleted) vs 7.8%(TPN) and 8%(enteral)
Sepsis: 8%(depleted) vs 1.9%(TPN) and 2%(enteral) |
| Le Cornu et al. 2000 | 82 pts with end-stage liver disease awaiting liver transplantation | 1). 41 patients supplemented group.
2). 39 patients control group | Intervention group -500 ml of supplement each day. Mean duration 77 days (range 1-395) vs Control group- Usual care | No significant difference in terms of outcome measures such as time on vent support, time spent in the ICU, LOS, infectious and noninfectious |
| Braga et al. 2002 | 150 pts with malignancy of GI tract. | 1). Control group
2). Pre-op group
3). Peri-op group | 1). Received postop enteral feeding w/ standard diet. vs 2). 7 days(1L/day) of diet enriched with arginine/omega-3 FAs/RNA. After surgery, given same standard enteral formula as controls.
3). 7 days(1L/day) of the enriched liquid diet and continued same formula after surgery. | Total complication:
Control group 42%, preop group 28%, periop group 18%. Significant btw control and periop groups. Postop LOS significantly shorter in preop(13.2 days) and periop(12.0 days) than in the control(15.3 days). |
Albumin Supplementation

- Timing – requires a minimum of two weeks preoperatively
- Enteral nutrition
- TPN

Albumin infusion
Albumin may well be a modifiable variable with a strong influence on surgical outcome
Best Practices

- Check albumin in all patients planning for inpatient colorectal surgery
- Define what is considered “low” for your institution (3.0 and below in SCOAP)
- If low:
 - Consider whether surgery can be postponed for elective, non-cancer cases
- If postponing:
 - Order pre-albumin
 - Refer for Nutrition Consult
 - When pre-albumin trends up, reschedule operation
 - (generally requires 2-6 weeks of nutritional supplementation)
SSC Check-Out Sheet

Medical Necessity: ________________________________ **Phone:** (206) 598-4477 **Fax:** (206) 598-9470

Diagnosis: ________________________________ **Next Appointment:** ________________________________

<table>
<thead>
<tr>
<th>Appointment Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIOLOGY</td>
<td></td>
</tr>
<tr>
<td>☐ CTUS Biopsy</td>
<td>206-598-8790</td>
</tr>
<tr>
<td>☐ MRI/CT</td>
<td>206-598-6214</td>
</tr>
<tr>
<td>☐ Pet Scan / CT</td>
<td>206-598-4240</td>
</tr>
<tr>
<td>☐ X-Ray</td>
<td>206-598-6209</td>
</tr>
<tr>
<td>☐ Vascular Diagnostic</td>
<td>206-598-4449</td>
</tr>
<tr>
<td>LABS</td>
<td></td>
</tr>
<tr>
<td>☐ PFT</td>
<td>206-598-4265</td>
</tr>
<tr>
<td>☐ Blood (CBC, BMP, PT, PTT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Urine</td>
<td></td>
</tr>
<tr>
<td>☐ Review at Next Clinic Visit</td>
<td></td>
</tr>
</tbody>
</table>

Reason for tests: ________________________________

| **CONSULT/REFERRAL to Clinic/Physician:** | |
| ☐ Consult | ☐ Assume Care | ☐ Emergent | ☐ Urgent | ☐ Routine | ☐ Procedure |

Note: The red circle indicates the highlighted area.
Nutritional Assessment Prior to Surgery

Before your operation you will have your blood protein level checked

Your doctor wants you to be in the best nutritional health for your operation.

- Patients with a low protein (albumin) level before their operation are at higher risk for healing problems, and complications.
- If you have a normal albumin level it will be easier for your body to heal after your operation.
- If you have a low albumin level a nutritionist can help you improve your nutritional level before surgery.

Before your Operation:

- We will have you get a blood draw to find out what your albumin level is
- If your albumin level is low we will teach you how to increase your level before your operation.
- You will meet with a Nutritionist who is a Registered Dietitian. They will help you develop a customized nutritional plan.
Improvement Strategies

• Review your SCOAP data for patterns and trends
• To improve testing rate, look at your pre-admission process and standing orders and make process or form changes to ensure reliable testing
• Educate surgeons to consider postponement of elective non-cancer colon or rectal surgery if possible
• Work with nutrition staff to set up consultation pathways
• Educate your patients about why this is important
One Hospital’s Story

- Established a work group with key staff and a surgeon champion
- Worked with pre-admission clinic to revise the order set
- Checked data weekly
- When improvement did not occur, added reminder notes on the order packet
- Gave regular feedback to surgeons with outliers
Another Hospital

• No pre-admission clinic, pre-admission testing done by the physician’s office

• Worked with the two main surgery groups to change their orders at the clinic level

• Albumin testing improved by 50% in one quarter